
Researching and Building
IR applications using Terrier
Craig Macdonald & Ben He
Department of Computing Science
University of Glasgow

ECIR 2008 - 30th March

Researching and Building
IR applications using Terrier
Craig Macdonald & Ben He
Department of Computing Science
University of Glasgow

ECIR 2008 - 30th March

30/03/2008 © Terrier Development Team 3

Tutorial Roadmap

• IR Science
• How to build large-scale IR systems in 2008
• Terrier as an illustration

– How to use Terrier
– How to extend Terrier
– Looking to the future

30/03/2008 © Terrier Development Team 4

And the Outline

• Motivations for an open source IR platform
• Indexing

– Background
– Terrier implementation
– Terrier usage
– Extending Terrier indexing

30/03/2008 © Terrier Development Team 5

Outline (2)

• Retrieval
– Document Weighting Models
– Query Expansion
– Terrier usage
– Extending Terrier to your research ideas

• Wrap up

30/03/2008 © Terrier Development Team 6

IR as an empirical science

• IR is about thorough and large-scale
experimentation
– Just look at recent SIGIR/ECIR proceedings!

• Designing a new IR idea is about:
– Knowing what has gone before
– Having the idea, and implementing it
– Comparing to the current state-of-the-art

30/03/2008 © Terrier Development Team 7

TREC

• Initiative for the cross-comparison of IR systems
– Exemplifies IR as an empirical science

• TREC Paradigm:
– Corpus of documents
– Queries (known as topics)
– Relevance assessments for each query

• Which documents are relevant to the query?

• Test Collections are the basis for advancing
knowledge in IR

30/03/2008 © Terrier Development Team 8

TREC Collections

• Constantly Increasing in size

13.03M2006Blog06
18.01.8M2002GOV

25M

1.6M
240k
500K
740K
Docs Size(GB)YearCollection

10.02000WT10G

425.02004GOV2

2.01999WT2G
1.91998Disk 4&5
2.01992Disk 1&2

30/03/2008 © Terrier Development Team 9

Experimenting in IR

• Recall Experimentation Outline:
– Understand state-of-the-art
– Design & implement new idea
– Compare new idea to state-of-the-art
– Draw conclusions

• Do you really want to implement the state-
of-the art techniques?

30/03/2008 © Terrier Development Team 10

Experimentation Timeline

• Read about state-of-
the-art

• Implement state-of-
the-art

• Design & implement
new technique

• Experiments
• Paper, PhD

• Read about state-of-
the-art

•• Implement state-of-Implement state-of-
the-artthe-art

• Design & implement
new technique

• Experiments
• Paper, PhD

GRAPHICAL?

OLD NEW

30/03/2008 © Terrier Development Team 11

Existing IR Platforms

• Academic:
– Terrier
– Zettair
– Lemur/Indri

• Non-Academic:
– Lucene/Nutch
– Xapian

Terrier:
• Flexible & ideal for

experimentation
• Rapid development of new

ideas
• Not just one model

– Implements various modern
state-of-the-art IR models

• Proven effective retrieval

30/03/2008 © Terrier Development Team 12

Learning Outcomes

• By the end of the tutorial:
– Learn more about large-scale IR systems
– How to use Terrier

• Design and evaluate an IR experiment
– Extend Terrier to your research ideas

• Join us in improving our Open Source
platform ;-)

30/03/2008 © Terrier Development Team 13

What is Terrier?
• Research project (2001-)

– Part of its outcome is released as open source software
• Latest release version 2.1 (19/03/08)

– Researchers, projects, PhD students and undergraduates all
involved

– Funded by UK Engineering & Physical Sciences Research
Council (GR/R90543/01); Leverhulme Trust (F/00179/S)

• Evaluation of Terrier
– TREC Web, Robust, Terabyte, Enterprise, Blog tracks
– CLEF Ad-hoc and Web tracks

• Platform to develop new research ideas for
experimentation
– Modern platform implementing various state-of-the-art

techniques for indexing and retrieval

30/03/2008 © Terrier Development Team 14

Open Source Terrier
• Why Open Source? Terrier is a community project

– you use & benefit
– you contribute
– Everyone benefits

• Cross-OS developed in Java
– runs on Windows, *nix, MacOS X

• Indexing and Querying APIs
– Easy to extend – adapt for new applications
– Modular architecture
– Simple to start working with
– Many configuration options

30/03/2008 © Terrier Development Team 15

Installing Terrier
• What do I need:

– Sun Java 1.5 or newer
– The package, e.g. terrier-2.1.tar.gz

or terrier-2.1.zip
– Linux / Windows operating system

[toto@boano tmp]$ ls

terrier-1.0.2.tar.gz

[toto@boano tmp]$ tar -xzf terrier-1.0.2.tar.gz

[toto@boano tmp]$ ls

terrier terrier-1.0.2.tar.gz

[toto@boano tmp]$ cd terrier

[toto@boano terrier]$ ls

bin etc licenses Makefile share var

doc lib LICENSE.txt README.txt src

[toto@boano terrier]$

• Terrier is pre-compiled
– No need to compile

TODO new windows figures

30/03/2008 © Terrier Development Team 16

What’s in Terrier
• bin/
• doc/
• etc/
• lib/
• share/
• src/
• var/

– index/
– results/

Scripts to Start Terrier
Documentation
Terrier Configuration Files
Compiled Java files
Stopwords & tests
Java Source for Terrier

Create index
Output from Batch Retrieval

Experiments

30/03/2008 © Terrier Development Team 17

Terrier Architecture Overview

Indexing API Querying API
Application

Parsing

Manager

Pre-processing Post-processing

Matching

Term Score

Modifiers

Document Score

Modifiers

Result set

Post-filtering

Indexer

Collection

public boolean nextDocument()

public Document getDocument()

Document

public String getNextTerm()

public HashSet getFields()

TermPipeline

public void processTerm(String t)

Index Builders

Data Structures

Corpus

Weighing Model

30/03/2008 © Terrier Development Team 18

Indexing

30/03/2008 © Terrier Development Team 19

Indexing Large-scale Collections

• Requirements:
– Parse (heterogeneous?) collections of

documents
• Web documents, Office files, Publications

– Process tokens: stemming, stopword removal,
synonymy

– Create compressed index structures, quickly
– Easily accessible index structures for efficient

matching

30/03/2008 © Terrier Development Team 20

Document Tokenisation
(Lexical Analysis)

• The process of converting a stream of characters (the
text of the documents) into a stream of words (the
candidate words to be adopted as index terms)
– i.e. identification of the words in the text

• Recognition of spaces ?
– Easy for English, French,…
– Chinese?

– treating digits, hyphens, punctuation marks, and the case of the
letters.

• Cases to be considered with care
– Numbers (e.g. 1999 vs. 510B.C)
– Hyphens (e.g state-of-the-art vs. B-49)
– Punctuation (e.g. 510B.C vs. list.id)
– Case of letters (e.g. Bank vs. bank) SEE ALSO: Lexical Analysis and stoplists

by E. Fox, In Information Retrieval - Data Structures &
Algorithms by Frakes & Yates, Prentice-Hall

30/03/2008 © Terrier Development Team 21

Term Pipelining
• In Terrier, each token from a Document is

passed through the Term Pipeline
• Each Term Pipeline stage can either:

– Transform the term
– Drop the term

• Why?
– Stemming, ala Porter’s English stemming etc.
– Stopword removal

• Flexibility
– Various chains of stages
– Language specific stemming
– Synonymy, ontologies, etc.

30/03/2008 © Terrier Development Team 22

Example
Twinkle, twinkle, little bat.
How I wonder what you’re at!
Up above the world you fly.
Like a tea-tray in the sky.

• Original Text

twinkle twinkle little bat how i wonder
what you re at up above the world
you fly like a tea tray in the sky

• Tokenisation

twinkle twinkle little bat wonder
world like tea tray sky• Stopword removal

twinkl twinkl littl bat wonder
world like tea trai sky• Stemming

30/03/2008 © Terrier Development Team 23

Basic Index Data Structures
• Lexicon

– Information about each term: Frequencies
– Offset in Inverted Index

• Inverted Index
– Posting lists for each term: <docid, tf>
– Posting list might also contain

• the (eg HTML) tags (known as fields) that the term occurs in
• Positions of occurrences in document: for “phrase matching”

• Document Index
– Length of each document

30/03/2008 © Terrier Development Team 24

Components of an inverted file

term

Total docs

Total frequency

pointer
Document number

frequency

Postings file

Lexical Information

30/03/2008 © Terrier Development Team 25

Direct Index
• An inverted index stores for a term, the

documents that term occurs in
– For fast retrieval of documents given a query

• A direct index stores for a document, the terms
that occurred in the document

• Direct Index facilitates
– Query Expansion (Pseudo-relevance feedback)
– Document clustering
– Document classification
– Document-document similarity

30/03/2008 © Terrier Development Team 26

How to Index (1): Direct file
Indexing with Sort based Inversion

• Iterate through collection, recording IDs for
each new terms
– Write out to Direct Index each document

(records terms for each document)
• Inversion:

– Scan entire direct index, building posting lists
for each term in memory

– Write out inverted postings once you know all
documents each term occurs in

PROBLEM: MEMORY

PROBLEM: MEMORY

TODO: ANIMATION

30/03/2008 © Terrier Development Team 27

How to Index (2):
Single Pass Indexing

• Parse collection, building inverted index
postings in memory
– Write out to disk when memory is exhausted

• Merge inverted indices RAM
t1

t2

t3

<> <> <>

<>

<> <>

Indexer

100%

DISK

0%

Final Inverted Index

However, no direct index by default

30/03/2008 © Terrier Development Team 28

Index Compression

• Indices can be compressed: this reduces
disk IO, making indexing and retrieval
faster

• Compression Examples:
– Variable Byte Encoding
– Elias-Unary Encoding
– Elias-Gamma Encoding

SEE ALSO: Managing Gigabytes: Witten, Moffat & Bell
 Morgan Kaufmann Publishing 1999

30/03/2008 © Terrier Development Team 29

Posting Compression
t1: <1, 5> <5,4> <19,3>

Record only gaps
t1: <1,5> <4,4> <14,3>
Unary Encoding: 0s until correct number reached,

then 1. (Great for small numbers!)
Gamma Encoding:
1. Separate the integer into the highest power of 2 it contains (2N)

and the remaining N binary digits of the integer.
2. Encode N in unary; that is, as N zeroes followed by a one.
3. Append the remaining N binary digits to this representation of N.

Compression can achieve reduction in index size!

Integer Encoding (32 bits each= 24 bytes)
0000000000000000000000000000001
0000000000000000000000000000101
0000000000000000000000000000100
0000000000000000000000000000100
0000000000000000000000000001110
0000000000000000000000000000011

Unary Encoding (4 bytes)
10000100001000100000000000001001

Gamma,Unary Encoding (2.7 bytes)
10010100100010001110

30/03/2008 © Terrier Development Team 30

Where in Terrier?
• Tokenisation:

– uk.ac.gla.terrier.indexing.*Document

• Term Pipelines:
– uk.ac.gla.terrier.terms.*

• Compression:
– Gamma compression for docids
– Unary compression for tf
– uk.ac.gla.terrier.compression.*

• Two-phase indexing:
– uk.ac.gla.terrier.indexing.(Basic|Block)Indexer
– uk.ac.gla.terrier.structures.indexing.*

• Single-pass indexing:
– uk.ac.gla.terrier.indexing.(Basic|Block)SinglePass Indexer
– uk.ac.gla.terrier.structures.indexing.singlepass.*

30/03/2008 © Terrier Development Team 31

Let’s try in Terrier

• Specify collection to index
• Indexing collection
• Advanced Indexing Options
• Extending Indexing

30/03/2008 © Terrier Development Team 32

Indexing with Terrier (1)

TREC AP Collection
<DOC>

<DOCNO> AP890101-0002 </DOCNO>

<FILEID>AP-NR-01-01-89 2359EST</FILEID>

<FIRST>r a PM-FutureFactory 01-01 0872</FIRST>

<SECOND>PM-Future Factory,0897</SECOND>

<HEAD>University Erects A Factory Of The
Future</HEAD>

<HEAD>Eds: Also in Monday AMs report.</HEAD>

<BYLINE>By DONNA BRYSON</BYLINE>

<BYLINE>Associated Press Writer</BYLINE>

<DATELINE>ROLLA, Mo. (AP) </DATELINE>

<TEXT>For students working in a miniature factory
at the University of Missouri-Rolla, the
future of American business is now...</TEXT>

</DOC>

<DOC>...

TREC .GOV2 Collection
<DOC>
<DOCNO>GX010-60-0164440</DOCNO>
<DOCHDR>
http://www.emsc.nysed.gov/repcrd2003/links/sg29.html
HTTP/1.1 200 OK
Server: Netscape-Enterprise/3.6 SP1
Date: Wed, 10 Dec 2003 08:52:41 GMT
Content-type: text/html
Last-modified: Mon, 19 May 2003 20:49:43 GMT
Content-length: 17183
Accept-ranges: bytes
Connection: close
</DOCHDR>
<html>
<head>
<title>Similar Schools Group #29 for 2001-2002</title>
</head>
<body bgcolor="#FFFFFF">
<p align="center"><img src="../images/emscban.gif"

width="476" height="111" alt="Office of
Elementary, Middle, Secondary and Continuing
Education"></p>...

</DOC>
<DOC>...

• Terrier can readily index tagged and TREC formatted
test collections

30/03/2008 © Terrier Development Team 33

Indexing with Terrier (2)

• Setup Terrier with:
bin/trec_setup.sh /path/to/collection

• This will:
– Make a default configuration properties file etc/terrier.properties
– Create an etc/collection.spec that contains a list of files to index

• Before proceeding, it’s worth checking that the etc/collection.spec
file contains only the files you want to index

30/03/2008 © Terrier Development Team 34

Indexing with Terrier (3):
Specify Collection to Index

[toto@boano terrier]$ bin/trec_setup.sh /path/to/collection/

Setting TERRIER_HOME to /users/toto/tmp/terrier

Setting JAVA_HOME to /local/java/linux/jdk1.5.0

Creating collection.spec file.

Creating trec.qrels file.

Creating topics file.

Creating models file.

Creating query expansion models (qemodels) file.

Creating terrier.properties file.

#add the files to index

/path/to/collection/AP890103.gz

/path/to/collection/AP890104.gz

...

/path/to/collection/AP891231.gz

/path/to/collection/AP890101.gz

/path/to/collection/AP890102.gz

/path/to/collection/README.gz
Updated collection.spec file. Please check that it contains

all and only all the files to be indexed, or create it manually.

[toto@boano terrier]$

30/03/2008 © Terrier Development Team 35

Indexing with Terrier (4):
Direct index based indexing with Inversion

• Index the collection with bin/trec_terrier.sh -i
[toto@boano terrier]$ bin/trec_terrier.sh -i

Setting TERRIER_HOME to /users/toto/tmp/terrier
Setting JAVA_HOME to /local/java/linux/jdk1.5.0

TRECCollection read collection specification

Processing /path/to/collection/AP890103.gz
Processing /path/to/collection/AP890104.gz

Processing /path/to/collection/AP890105.gz
Processing /path/to/collection/AP890106.gz

Processing /path/to/collection/AP890107.gz
Processing /path/to/collection/AP890108.gz

...

Finished building the inverted index...
Time elapsed for inverted file: 239.298

Time elapsed: 1119.203 seconds.
[toto@boano terrier]$

30/03/2008 © Terrier Development Team 36

Indexing with Terrier (5): Single
Pass Indexing

Index the collection with bin/trec_terrier.sh -i -j
[toto@boano terrier]$ bin/trec_terrier.sh -i -j

INFO - TRECCollection read collection specification (20 files)
INFO - Processing /path/to/collection/AP890103.gz

Starting building the inverted file...
INFO - creating the data structures data_1
INFO - Creating IF (no direct file)..
INFO - Collection #0 took 20 seconds to
 build the runs for 210 documents
INFO - Merging 1 runs...
INFO - Collection #0 took 21 seconds to merge

INFO - Collection #0 total time 21
Finished building the inverted index...
Time elapsed for inverted file: 0.655
Time elapsed: 0.732 seconds.

v2.0

30/03/2008 © Terrier Development Team 37

Why use Single Pass Indexing?
• Advantages:

– (Much) faster
– less memory problems with larger collections
– Reduced storage required, as direct index is not built

3hour 3min4hr 40minBlog06
47.1min1 hr 11min.GOV
34.68min
7.52min
7.63min
8.65min

Single-pass

1 hr 2.5minWT10G
9.95minWT2G
11.7minDisk4&5
13.5minDisk1&2

Two-phaseCollection

• Disadvantage: No direct index is created
– (use uk.ac.gla.terrier.structures.indexing.singlepass.

Inverted2DirectIndexBuilder to fix)

30/03/2008 © Terrier Development Team 38

Terrier Index files
The indexing process generates files in directory var/index:

1. Document index (data.docid)

2. Vocabulary/Lexicon (data.lex)

3. Direct index (data.df)
– (Not for single-pass indexing)

4. Inverted index (data.if)

5. Index properties (data.properties)

}kw{doc ji !! "!
about

}{dockw ij !!! "!
describes

}{kw set j

}{doc set i

•Specifies Index classes
•Index statistics

30/03/2008 © Terrier Development Team 39

But that’s not all….
• This is basic indexing
• Terrier can do much more

– Allowing flexibility

• Examples:
– Which stemmer?
– Non-English settings
– Term positions
– Fields

30/03/2008 © Terrier Development Team 40

Configuring Terrier (1)
• You can configure Terrier to your needs by editing the

file etc/terrier.properties
#directory names

terrier.home=/users/toto/tmp/terrier

...

#stop-words file

stopwords.filename=stopword-list.txt

...

#the processing stages a term goes through

termpipelines=Stopwords,PorterStemmer

• Look at etc/terrier.properties.sample for examples.
– Documentation contains pointers to specific properties
– The Javadoc for each class lists properties that affect it
– doc/properties.html lists all known properties in Terrier

• Eg: I want to create/open an index at /path/to/index
– terrier.index.path=/path/to/index

30/03/2008 © Terrier Development Team 41

Configuring Terrier (2)

• Use a different stemmer by changing the Term
Pipeline
termpipelines=Stopwords,WeakPorterStemmer

– {PorterStemmer,WeakPorterStemmer,
*SnowballStemmer,<blank>}

• Disable removing of stopwords
termpipelines=SpanishPorterStemmer

– {Stopwords,<blank>}
• Show terms in pipeline

termpipelines=DumpTerm,PorterStemmer,DumpTerm

30/03/2008 © Terrier Development Team 42

Indexing with Blocks
• Save exact positions of terms in order to do “phrase

search” or proximity search
block.indexing=true

block.size=1

max.blocks=1000

• Increases indexing time
– But less marked for single-pass indexing

4hour 19min3hour 3min10hour 36min4hr 40minBlog06
1hour 11 min47.1min2hour 45min1hour 11 min.GOV

34.68min
7.52min
7.63min
8.65min

Single-pass

53.1min2hour 18min1 hour 2.5minWT10G
10.8min23.6min9.95minWT2G
10.2min25.0min11.7minDisk4&5
12.1min32.6min13.5minDisk1&2

Single-pass +
Blocks

Two-phase +
Blocks

Two-phaseCollection

30/03/2008 © Terrier Development Team 43

Configuring Terrier (3)

• Index fields
FieldTags.process=TITLE,H1

• Specify which tags will be indexed
TrecDocTags.doctag=DOC

TrecDocTags.idtag=DOCNO

TrecDocTags.skip=DOCHDR

• Index only the titles of documents
TrecDocTags.doctag=DOC

TrecDocTags.idtag=DOCNO

TrecDocTags.process=TITLE

<DOC>

<DOCNO>DOC-X1</DOCNO>

<DOCHDR>

. . .

</DOCHDR>

<TITLE>. . .</TITLE>

. . .

<H1>. . .</H1>

</DOC>

• Indexing fields
– Save whether a term appears within a particular tag
– HTML tags
– collection specific tags
– Tags indicating the language of a document

30/03/2008 © Terrier Development Team 44

Configuring Terrier for
Non-English Documents

•Set string.use_utf=true to support Unicode
characters in the Lexicon
•Use trec.collection.class=TRECUTFCollection to parse
TREC-like Collections
•Use non-English stemmers:
DanishSnowballStemmer, DutchSnowballStemmer, EnglishSnowballStemmer,
FinnishSnowballStemmer, FrenchSnowballStemmer, GermanSnowballStemmer,
HungarianSnowballStemmer, ItalianSnowballStemmer,
NorwegianSnowballStemmer, PortugueseSnowballStemmer,
RomanianSnowballStemmer, RussianSnowballStemmer,
SpanishSnowballStemmer, SwedishSnowballStemmer, TurkishSnowballStemmer

v1.1.1

v1.1.0

30/03/2008 © Terrier Development Team 45

Extending Indexing:
“But Terrier doesn’t do…X?”

• Terrier has been designed to make it simple to add
support for X

• How do I index a new type of Collection?
– Database, email, RSS feeds
– Implement Collection & Document interfaces

• How can I expand a document using Wordnet to contain
synonyms?
– Implement Term Pipeline interface

• And contribute back to platform for next release… ;-)

30/03/2008 © Terrier Development Team 46

Indexing Architecture

30/03/2008 © Terrier Development Team 47

Indexing API
Indexer

Collection

public boolean nextDocument()

public Document getDocument()

Document

public String getNextTerm()

public HashSet getFields()

TermPipeline

public void processTerm(String t)

Index Builders

Data Structures

Corpus

30/03/2008 © Terrier Development Team 48

Collection and Document
• If you want to parse your own collection, you need to:

– implement the Collection interface for obtaining documents from the collection
public Document getDocument();

public boolean nextDocument();
public String getDocid();

public boolean endOfCollection();

– implement the Document interface for parsing the documents
public String getNextTerm();
public boolean endOfDocument();

• See also:
– doc/indexing.html
– doc/javadoc/uk/ac/gla/terrier/indexing/Collection.html
– doc/javadoc/uk/ac/gla/terrier/indexing/Document.html

• Examples in package uk.ac.gla.terrier.indexing:
– TRECCollection -> TRECDocument
– TRECUTFCollection -> TRECUTFDocument
– SimpleFileCollection -> FileDocument; HTMLDocument; PDFDocument; MSWordDocument
– SimpleXMLCollection

30/03/2008 © Terrier Development Team 49

Case Study: Indexing RSS Feeds

• Brief: Create a News Search + Aggregation
System

• Problem: I want to download and index a list
of RSS feeds

• Solution:
– Terrier can fetch files directly from HTTP
– Use ROME RSS/Atom parser: https://rome.dev.java.net

– Implement Collection and Documents RSS
objects (see Handout)

v2.1

30/03/2008 © Terrier Development Team 50

Zoom on RSS code

• Problem: Download RSS feeds
– Use Files class - read/writes files and HTTP URLs
– Files.openFileReader(“http://rss.bbc.co.uk/…”);

• Problem: Parse RSS feed
– Use ROME parser

• Problem: Tokenise Text from RSS feed
– Subclass TRECDocument, pass text from ROME to

TRECDocument

v2.1

30/03/2008 © Terrier Development Team 51

Term Pipeline
• When terms are indexed, they are passed through the TermPipeline

– You can implement your own TermPipeline objects
– Alter/remove/add terms as they pass through the term pipeline

• Examples found in package uk.ac.gla.terrier.terms
– Stemming, Removing stopwords, Noun phrase extraction, etc etc

public class DumpTerm implements TermPipeline {
 TermPipeline next = null;
 public DumpTerm(TermPipeline next) {
 this.next = next;
 }
 public void processTerm(String t) {

 if (t == null)
 return;

 System.err.println("term: "+t); //display term
 next.processTerm(t); //pass onto next term pipeline object
 }
}

30/03/2008 © Terrier Development Team 52

End of Part 1

Coffee is on Level 5 upstairs

We resume at 4pm

30/03/2008 © Terrier Development Team 53

Retrieval in IR

• Retrieving documents:

30/03/2008 © Terrier Development Team 54

Retrieval Overview
• Background:

– Document Weighting Models
– Query expansion (QE)

• Experimenting and Research with Terrier
– TREC experimentation

• Extending Terrier retrieval
– Changing the ranking
– Getting statistics

• Retrieval examples
– Document Priors
– Opinionated Document Retrieval

30/03/2008 © Terrier Development Team 55

Ranking in IR

• The IR system ranks documents in
response to a query
– The documents are ranked in decreasing

order of predicted relevance to the user’s
query

• Query term occurrences in documents are
scored to obtain the relevance score value
of the document to the query:

Score(d,Q)

30/03/2008 © Terrier Development Team 56

Retrieval: More Details

 Query
1.Parsing (Tokenisation)
2.Stemming/stopwords
3.Matching & scoring
4.Post-processing/filtering
5.Application rendering

Terrier

Application

Parsing

Manager

Pre-processing Post-processing

Matching

Term Score

Modifiers

Document Score

Modifiers

Result set

Data Structures

Post-filtering

Weighing Model

30/03/2008 © Terrier Development Team 57

Ranking Process

• Tokenise the user’s query
• Retrieve documents matching query terms

using Inverted Index
• Score retrieved documents, and sort by

decreasing score
• Present results to the user

30/03/2008 © Terrier Development Team 58

Scoring Documents

• A simple model of scoring documents to a
query is TF.IDF:

• Also Language Modelling (Hiemstra)

!

score(d,Q) = tf " log2

N

N
tt#Q

$

!

p(d | Q)" p(Q | d)p(d)

!

score(d,Q) = w(t,d) =
t"Q

log2 1+
$ % tf %T

c

(1& $) %TF % l
d

'

(
)

*

+
,

t"Q

#=>

30/03/2008 © Terrier Development Team 59

Weighting Models in Terrier

• Terrier provides many state-of-the-art
document weighting models:
– TF-IDF (with length normalisation, aka BM11)
– Lemur’s TF-IDF
– Okapi BM25
– Hiemstra and Ponte&Croft Language Models
– Various Divergence from Randomness (DFR)

models

30/03/2008 © Terrier Development Team 60

Divergence from Randomness (DFR)
• The DFR paradigm is a generalisation of Harter’s 2-poisson indexing model

• The DFR approach is based on a simple idea:
– “The more the divergence of the within-document term-frequency from its

frequency within the collection, the more the information carried by the word t in
the document d”

• A query term w(t,d) is scored by how different its term
distribution in the document d is, compared to the whole
collection (where the distribution of the term is assumed
to be random)
– w(t,d) is calculated using various probabilistic divergence

measures

Collection Urn

Document Urn

30/03/2008 © Terrier Development Team 61

Weighting Models in Terrier

• All in uk.ac.gla.terrier.matching.models
• Example Weighting Model:
class SimpleTFIDF extends WeightingModel
{
 public double score(tf, doclength)
 {
 return tf * Math.log(
 numberOfDocuments/documentFrequency)
 /Math.log(2);
 }
}

What is Query Expansion (QE)?
• Relevance feedback

– Taking evidence on relevant and irrelevant document
to reformulate the query

– Can be interactive (with a user), or blind [pseudo-
relevance fedback] without the user

• Terrier’s QE is a pseudo-relevance fedback
technique that
– Expands the query by adding new query terms
– Re-weights the query terms

• It re-formulates the user query, so that to achieve
a better retrieval performance

Expanding the query

• The added query terms are meant to be
related to the topic

• QE brings more information to the query
• It helps to retrieve more relevant

documents
BUT it can also bring noise

Illustrative Example
• TREC Query: Scottish highland games

• What are the possible expanded query terms?

• The expanded query (Using one of Terrier’s QE mechanisms
and Weak Stemming):
– Scottish highland games Ligonier kilt caber clan toss Scot

tartan grandfather artist heavy tradition dance Celtic dancer
athlete heather competitor

• In the expanded query (using the relevance assessment)
– These terms are helpful: Ligonier kilt caber clan toss Scot

tartan
– These terms bring noise: grandfather artist heavy
– The rest of the added query terms are neutral, e.g. dancer,

tradition

Terrier's QE Models
• Basic idea: infer how informative a term is by the

divergence of the term's distribution in the pseudo
relevance set from a random distribution
– Identical concept to document weighting

• Terrier deploys three QE models:
– KL: Kullback-Leibler divergence
– Bo1: Bose-Einstein statistics
– Bo2: A variation of Bo1

Pseudo Relevant Set Urn
Collection Urn

Problems With QE
1. Can be detrimental if the pseudo relevance set is

poor
– The added query terms are unlikely to be related

to the topic
2. May not be rewarding if the number of relevant

documents is small
– Adding more query terms cannot bring many

relevant documents
– e.g. query Homepage of Terrier platform has only

a unique relevant document. It is not helpful to
expand the query

SEE ALSO: Learning to Estimate Query Difficulty with
Applications to Missing Content Detection and Distributed
Information Retrieval. Yom-Tov et al. SIGIR 2005.

30/03/2008 © Terrier Development Team 67

Practical Retrieval using Terrier

Terrier has two retrieval applications:
• Interactive Retrieval
• TREC-like batch retrieval for

experimentation

30/03/2008 © Terrier Development Team 68

Interactive Retrieval with Terrier
• Run the script bin/interactive_terrier.sh
[toto@boano terrier]$ bin/interactive_terrier.sh
Setting TERRIER_HOME to /users/toto/tmp/terrier
Setting JAVA_HOME to /local/java/linux/jdk1.5.0
time to intialise indexes : 0.269
Please enter your query: cellular
1 : cellular
weighting model: PL2c1.0
1: cellular with 451 documents (TF is 1216).
number of retrieved documents: 451

 Displaying 1-451 results
0 AP900725-0227 210549 9.964763620794955
1 AP900523-0277 196850 9.912967288227696

...
449 AP901009-0235 225761 1.7048076030739692
450 AP900808-0105 213356 1.4994280197490206
Please enter your query: <return>
[toto@boano terrier]$

30/03/2008 © Terrier Development Team 69

More Interactive Terrier
• To choose a weighting model, specify property

interactive.model=TF_IDF

• Interactive Terrier is not designed for
experimentation

• It is a small application, ideal for
– Debugging
– Example Querying code
– Using as a base to your IR application powered by

Terrier

v2.1

30/03/2008 © Terrier Development Team 70

Query Language (1)

• Terrier has an advanced query language
with the following operators

t1 t2 : retrieves documents with either t1 or t2

t1^2.3: the weight of t1 is boosted to 2.3

+t1 -t2: retrieve docs with t1 but not t2

“t1 t2”: retrieve docs with the phrase 't1 t2'

“t1 t2”~n: retrieve docs where the terms t1, t2
appear within the given distance

– Requires indexing with blocks

30/03/2008 © Terrier Development Team 71

Query Language (2)

• More query language operators
– +(t1 t2): both terms t1 and t2 are required

– field:t1 : retrieves docs where t1 appears in the
specified field

– control:on/off : enables or disables a given control

 like properties, but for query settings
 enable query expansion with qe:on

• Controls are used to control the querying process on a
per-query basis
querying.default.controls=c:1.0,start:0,end:999

• To avoid potential security problems, a list of allowed
control is defined as follows:
querying.allowed.controls=c,scope,qe,qemodel,start,end

30/03/2008 © Terrier Development Team 72

Experimentation in IR

• Is a new technique/weighting model any
good?
– Evaluate using standard test collection

• Terrier is ideal for TREC-like
experimentation and evaluation
– Generate runs: the retrieved set of documents

for a pre-defined set of queries

30/03/2008 © Terrier Development Team 73

Checklist: Running an experiment

1. Index your test corpus
2. Select test collection: topics + relevance

assessments
3. Do baseline ‘run’ and evaluate
4. Implement and enable new technique
5. Do new ‘run’
6. Has retrieval performance improved?

30/03/2008 © Terrier Development Team 74

Batch Retrieval with Terrier
• Example TREC topic
<top>
<head> Tipster Topic Description
<num> Number: 051
<dom> Domain: International Economics
<title> Airbus Subsidies
<desc> Description:
Document will discuss government assistance to Airbus Industrie, or mention a trade

dispute between Airbus and a U.S. aircraft producer over the issue of subsidies.
<narr> Narrative:
A relevant document will cite or discuss assistance to Airbus Industrie by the French,

German, British or Spanish government(s), or will discuss a trade dispute between
Airbus or the European governments and a U.S. aircraft producer, most likely Boeing Co.
or McDonnell Douglas Corp., or the U.S. government, over federal subsidies to Airbus.

</top>

• Specify the topics file in etc/trec.topics.list
echo /path/to/topics > etc/trec.topics.list

OR
trec.topics = /path/to/topics

30/03/2008 © Terrier Development Team 75

Configuring Batch Retrieval (1)
• In the properties file, specify whether to use short,

normal, or long queries

#short: title only

TrecQueryTags.doctag=TOP

TrecQueryTags.idtag=NUM

TrecQueryTags.process=TOP,NUM,TITLE

TrecQueryTags.skip=DESC,NARR

#normal: title + description

TrecQueryTags.doctag=TOP

TrecQueryTags.idtag=NUM

TrecQueryTags.process=TOP,NUM,TITLE,DESC

TrecQueryTags.skip=NARR

#long: title + description + narrative

TrecQueryTags.doctag=TOP

TrecQueryTags.idtag=NUM

TrecQueryTags.process=TOP,NUM,TITLE,DESC,NARR

<top>

<num> Number: TOPIC-X1

<title> . . . </title>

<desc> . . . </desc>

<narr> . . . </narr>

</top>

30/03/2008 © Terrier Development Team 76

Configuring Batch retrieval (2)
• Set the weighting models to use

– Divergence From Randomness (DFR) framework models, such as PL2
– Classical models, such as tf-idf, BM25

echo PL2 > etc/trec.models

• You can specify more than one weighting models in etc/trec.models

echo PL2 > etc/trec.models
echo In_expB2 >> etc/trec.models
echo Hiemstra_LM >> etc/trec.models

30/03/2008 © Terrier Development Team 77

Let's (batch) retrieve!
• Using trec_terrier.sh script to retrieve all queries

[toto@boano terrier]$ bin/trec_terrier.sh –r
Setting TERRIER_HOME to /users/toto/tmp/terrier
Setting JAVA_HOME to /local/java/linux/jdk1.5.0
time to intialise indexes : 0.226
Extracting queries from 51-200.topics
051 : airbus subsidies
processing query 051
time to process query: 0.262
...

• Runs are stored in the folder var/results/,
numbered…
– E.g. InL2_c1.0_0.res then InL2_c1.0_1.res etc
– InL2_c1.0_0.settings contains the properties and other

settings used by Terrier, to help recreate runs later

30/03/2008 © Terrier Development Team 78

Runs with Query Expansion
• Automatically extracts informative terms from top ranked

documents and adds them to the query

• Use query expansion when batch querying
bin/trec_terrier.sh -r -q

• How to specify the query expansion model?
echo Bo1 > etc/qemodels

• Available models: Bo1, Bo2 and KL
• Number of top-ranked documents: expansion.documents
• Number of terms to extract: expansion.terms

30/03/2008 © Terrier Development Team 79

Evaluation
• How well did the system perform?

• Specify the qrels file with the relevance assessments to
use in etc/trec.qrels
echo /path/to/qrels > etc/trec.qrels

• Evaluate all the result files in the var/results directory
[toto@boano]$ bin/trec_terrier –e

Setting TERRIER_HOME to /users/toto/tmp/terrier

/users/toto/tmp/terrier/var/results/InL2c1.0_0.res

Average Precision: 0.0806

Time elapsed: 0.26 seconds

• InL2c1.0_0.eval contains usual evaluation
measures, P@10 P@20 etc.
– This is not TREC_EVAL though

30/03/2008 © Terrier Development Team 80

Extending Terrier: how I do implement X?
• Terrier has a rich API that allows the result

set of documents for a query to be altered
– In various ways
– At various phases of the retrieval

30/03/2008 © Terrier Development Team 81

Retrieving API

Terrier

Application

Parsing

Manager

Pre-processing Post-processing

Matching

Term Score

Modifiers

Document Score

Modifiers

Result set

Data Structures

Post-filtering

Weighing Model

30/03/2008 © Terrier Development Team 82

Before Matching

• Parsing the query
• Pre-processing the parsed query for

matching (TermPipeline)
– Recall from indexing
– Usually Stopword removal, Stemming

30/03/2008 © Terrier Development Team 83

Matching
• The class Matching takes as input:

– A query
– The data structures
– Weighting model

• Retrieves and ranks documents according to a weighting
model
– Returns a ResultSet

• Found in package uk.ac.gla.terrier.matching

• The output of the matching can be modified by applying
Term Score Modifiers and Document Score Modifiers

30/03/2008 © Terrier Development Team 84

Weighting Models for Matching
• Abstract class Model

– WeightingModel
• BB2, IFB2, I(ne)C2, I(ne)B2, InL2, PL2, DLH, DFR_BM25
• BM25
• tf-idf
• Hiemstra_LM, LemurTF_IDF

public class MyModel extends WeightingModel {
 . . .
 public final String getInfo() { return “MyModel”; }
 public double score(double tf, double length) { ...; return score; }
 public double score(double tf,
 double length,
 double n_t,
 double F_t,
 double keyFrequency) { ...; return score; }
}

• Found in package uk.ac.gla.terrier.matching.models

30/03/2008 © Terrier Development Team 85

Score Modification during Matching
• Take the query title:t1 “t2 t3”

– Retrieve documents where t1 must occur in title field,
and “t2 t3” occur as a phase

• Two forms of score modification occur during
matching for this query
– TermScoreModifier: For each document retrieved,

does t1 occur in title field?
– DocumentScoreModifier: For each document

retrieved, does t2 & t3 both occur in it, and as a
phase?

• We can also use score modification to
implement advanced ranking functionality
– e.g Prior integration

30/03/2008 © Terrier Development Team 86

Term Score Modifiers
• Alters the given score to a term in a retrieved document
• Query specific TSMs (enabled automatically when required for a

query):
– TermInFieldModifier
– RequiredTermModifier

The query operators field:term, +term result in applying the
term score modifiers TermInFieldModifier and
RequiredTermModifier respectively

• Static TSMs: when you want to include additional evidence:
– Specify the term score modifiers to apply with the following property

matching.tsms=FieldScoreModifier

• Found in package uk.ac.gla.terrier.matching.tsms

30/03/2008 © Terrier Development Team 87

Document Score Modifiers
• Alters the given scores to a retrieved document
• Query specific DSMs (enabled automatically when required for a

query):
– PhraseScoreModifier

The query “t1 t2” returns only documents that match the phrase, by
applying the document score modifier PhraseScoreModifier as a filter

• Static DSMs: To change the retrieval scores of the retrieved documents,
Specify the document score modifiers to apply with the following property:
matching.dsms=BooleanFallback

matching.dsms=BooleanScoreModifier

• Found in package uk.ac.gla.terrier.matching.dsms

30/03/2008 © Terrier Development Team 88

ResultSet
• Matching returns the ResultSet

– The documents returned by Matching for a query

• The ResultSet contains
– Array of scores
– Array of document ids (numerical document identifiers)
– Array of flags that denote whether a query term occurred in a

document

• Found in package uk.ac.gla.terrier.matching

30/03/2008 © Terrier Development Team 89

After Matching
• Driven by user applications, e.g.:

– Controlling the type/location of the document, (filetype:pdf,
site:gla.ac.uk)

– Running QE
– Two phases: Post Processing & Post Filtering

• Post-processing
– Alters the result set after matching has finished
– e.g. Query expansion expands the query, then runs matching

again with the new query

• Post-filtering
– Optional (last-ditch) filtering of documents

• Found in package uk.ac.gla.terrier.querying

30/03/2008 © Terrier Development Team 90

Extending Retrieval Use Cases:
Document Priors

• Aim: retrieve high quality as well as relevant
documents

• Assumption: You have a file containing PageRank
scores for each document in the collection

• Integrate with retrieval score as

• How: Use a DocumentScoreModifier
– Modify retrieval scores at end of Matching

!

score(d,Q) = score(d,Q) * prior (d)

30/03/2008 © Terrier Development Team 91

Example: Prior Integration
class IntegrateStaticScore implements DocumentScoreModifier
{

 //populated one for each document in collection
 double prior[] = new double[];
 public boolean modifyScores(Index I,

MatchingQueryTerms mqt, ResultSet r)
 {
 double[] scores = r.getScores();
 int[] docids = r.getDocids();
 for(int i=0;i<scores.length;i++)
 {
 scores[i] = scores[i] * prior[docids[i]];
 }
 return true;
 }
}

30/03/2008 © Terrier Development Team 92

Extending Retrieval: Opinionated
Document Retrieval

• Aim: retrieve not just relevant, but opinionated
documents
– Cf. TREC 2006-2008 Blog Tracks

• Approach:
– Offline: Score all documents in the collection using a

large query containing a list of opinionated terms
– Use these document opinionated scores as a prior, as

before

30/03/2008 © Terrier Development Team 93

Extending Retrieval: Working
with Index Structures

• The Index object provides access to all index
structures
– Index.createIndex(); //load an existing index
– index.getInvertedIndex(); //returns inverted index

• You can add more index structures to an index:
– index.addIndexStructure(name, objects); index.flush();
– index.getIndexStructure(name); V2.0

30/03/2008 © Terrier Development Team 94

Statistics Examples
How many documents

does term X occur in?
Index index = Index.createIndex();
Lexicon lex = index.getLexicon();
LexiconEntry le =

lex.getLexiconEntry("X");
if (le != null)

System.out.println("Term X occurs
in "+ le.n_t + " documents");

else
System.out.println("Term X does
not occur");

Double probabilityX = (le == null)
 ? 0.0d
 : le.TF /

index.getCollectionStatistics().g
etNumberOfTokens()

What terms occur in the
10th document?

Index index = Index.createIndex();
DirectIndex di =

index.getDirectIndex();
Lexicon lex = index.getLexicon();
int[][] postings = di.getTerms(10);
for(int i=0;i<postings[0].length; i++)
{

LexiconEntry le =
lex.getLexiconEntry(
postings[0][i]);
System.out.print(le.term + " with
frequency "+ postings[1][i]);

}

30/03/2008 © Terrier Development Team 95

Statistic Examples (2)

• What documents does term Z occur in?
Index index = Index.createIndex();
InvertedIndex di = index.getInvertedIndex();
DocumentIndex doi = index.getDocumentIndex();
Lexicon lex = index.getLexicon();
LexiconEntry le = lex.getLexiconEntry("Z");
int[][] postings = ii.getDocuments(le);
for(int i=0;i<postings[0].length; i++)
{

System.out.println(doi.getDocumentNumber(postings[0][i])
+ " with frequency "+ postings[1][i]);

}

30/03/2008 © Terrier Development Team 96

Data Structures Builders
• Builders for the 4 main data structures

– Lexicon and Lexicon index : stores the vocabulary
– Document Index : stores information about documents
– Direct File (used for fast query expansion) : stores the terms for each

document
– Inverted File : stores the postings lists

• Found in package uk.ac.gla.terrier.structures.indexing

* Includes the size of a lexicon with global
statistics

30/03/2008 © Terrier Development Team 97

Lexicon
• Stores information about the vocabulary – which terms are in collection

public boolean findTerm(int termId)

public boolean findTerm(String term)

public String getTerm()

public int getTermId()

public int getTF()

public int getNt()

public long getStartOffset()

public byte getStartBitOffset()

public long getEndOffset()

public byte getEndBitOffset()

public int getNumberOfLexiconEntries()

• Found in package uk.ac.gla.terrier.structures
• Using lexicon as a random access file

– Lexicon

• Using lexicon as a stream
– LexiconInputStream

– LexiconOutputStream

Offset of an entry in the lexicon (8 bytes)Lexicon Index

Term (20 bytes), Term id (4 bytes), Document frequency (4 bytes), Term Frequency (4
bytes), End byte offset in inverted file (8 bytes), End bit offset in inverted file (1 byte)

Lexicon

30/03/2008 © Terrier Development Team 98

Document Index
• Stores information about documents

public String getDocumentNumber(int docid)
public int getDocumentId(String docno)
public int getDocumentLength(int docid)
public int getDocumentLength(String docno)

public byte getStartBitOffset()
public byte getEndBitOffset()
public long getStartOffset()
public long getEndOffset()

Public int getNumberOfDocuments()

• Found in package uk.ac.gla.terrier.structures
• Using document index as a random access file

– DocumentIndex
– DocumentIndexInMemory
– DocumentIndexEncoded

• Using document index as a stream
– DocumentIndexInputStream

Document id (4 bytes), Document Length (4 bytes), Document number (20 bytes),
End byte offset in direct file (8 bytes), End bit offset in direct file (1 byte)

Document Index

30/03/2008 © Terrier Development Team 99

Direct Index
• Useful for fast query expansion or clustering
• Stores the terms that are contained in each document

public int[][] getTerms(int docid)

• The method getTerms returns a two dimensional array:
int[][] terms = getTerms(docid);
terms[0] //contains term identifiers
terms[1] //contains term frequencies in the document
terms[2] //is null, or contains field information if fields are indexed

• If blocks are indexed
terms[4] //contains the number of blocks in which a term appears
terms[5] //contains the block identifiers

• (The length of terms[5] is different from the length of terms[4])
• Found in package uk.ac.gla.terrier.structures
• Using direct index as a random access file

DirectIndex, BlockDirectIndex

• Using direct index as an input stream
DirectIndexInputStream, BlockDirectIndexInputStream

Term id gap (gamma code), Term frequency (unary code), Fields (# of fields bits), Block
frequency (unary code), [Block id gap (gamma code)]

Direct Index

30/03/2008 © Terrier Development Team 100

Inverted Index
• Stores the posting lists

public int[][] getDocuments(int termId)

• The method getDocuments returns a two dimensional array:
int[][] postings = getDocuments(termId);

postings[0] //contains document identifiers
postings[1] //contains term frequencies in the document
postings[2] //is null, or contains field information if fields are indexed

• If blocks are indexed
postings[4] //contains the number of blocks in which a term appears
postings[5] //contains the block identifiers

• The length of postings[5] is different from the length of postings[4]
• Found in package uk.ac.gla.terrier.structures
• Using inverted index as a random access file

InvertedIndex
BlockInvertedIndex

Document id gap (gamma code), Term frequency (unary code), Fields (# of fields
bits), Block frequency (unary code), [Block id gap (gamma code)]

Inverted Index

30/03/2008 © Terrier Development Team 101

Compiling Terrier
• To use your code with Terrier, add your jar file or

your class folder to the CLASSPATH
environment variable

• If you do need to alter the code in Terrier, then
you have to recompile.

• bin/compile.sh
• bin/compile.bat
• make clean compile

• In Eclipse, you will need the Antlr plugin to
compile Terrier

30/03/2008 © Terrier Development Team 102

Putting it altogether
• Searching your desktop:

– Terrier Desktop Search

• Java Swing GUI
• Comes with Terrier

• SimpleFileCollection
– FileDocument, PDFDocument,

WordDocument, etc

30/03/2008 © Terrier Development Team 103

Improved Desktop Search
• Improved Desktop Search

built on Terrier
– Integrated into Windows UI

30/03/2008 © Terrier Development Team 104

Putting it altogether (2)

• Custom Search Engine Application
– Terrier integrated with web crawler
– Indexes and retrieves web pages from DCS
– Results on web interface

30/03/2008 © Terrier Development Team 105

Expert Search Engine

30/03/2008 © Terrier Development Team 106

Recent Improvements

• 2.1
– Various bug fixes
– FileSystem abstraction layer

• 2.0
– Single-pass indexing
– Better non-English support
– New index format (backward compatabile)

• 1.1.x
– Non-English index support (UTF)

30/03/2008 © Terrier Development Team 107

Useful Links
• Terrier Website

 http://ir.dcs.gla.ac.uk/terrier/

• Terrier Forum - (very active recently)
http://ir.dcs.gla.ac.uk/terrier/forum/

• Terrier Documentation
– Contents http://ir.dcs.gla.ac.uk/terrier/doc/
– TREC Experiment Examples http://ir.dcs.gla.ac.uk/terrier/doc/trec_examples.html
– All properties http://ir.dcs.gla.ac.uk/terrier/doc/properties.html

• Terrier Publications:
– http://ir.dcs.gla.ac.uk/terrier/publications.html

30/03/2008 © Terrier Development Team 108

Summarising

• Open source IR platform since 2004
• Ideal for

– Building IR applications
– Rapid development of new research ideas
– Large-scale experimentation

• Come participate on the forum!

• Cite us when use Terrier in your papers
– Ounis et al. Terrier: A High Performance and Scalable

Information Retrieval Platform.In Proceedings of ACM SIGIR'06
Workshop on Open Source Information Retrieval.

30/03/2008 © Terrier Development Team 109

Achieved Outcomes
• Learn more about large-scale IR systems

– Indexing strategies
– Index compression
– Document weighting models + QE

• How to use Terrier
– Indexing & configuring indexing
– Retrieval & configuring retrieval

• Design and evaluate an IR experiment
– Collection, Topics, Qrels, Evaluate

• Extend Terrier to your research ideas
– Indexing: Collection, Documents, TermPipelines
– Retrieval: DSMs, TSMs, Post Proceses/Filters

30/03/2008 © Terrier Development Team 110

Hopeful future release might
have…

• More query language constructs:
– Polysemy
– Prior integration

• Collection annotation, e.g. POS
• Query Performance Prediction & DIR

Resource Selection
• Web Search UI

Perhaps with your help!

