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Overview

1. Introduction to information retrieval and
three basic probabilistic approaches
— The probabilistic model / Naive Bayes
— Google PageRank
— Language Models

2. Advanced language Modeling approaches 1
— Statistical Translation
— Prior Probabilities

3. Advanced language Modeling approaches 2
— Relevance Models & Expert Search
— EM-training & Expert Search
— Probabilistic random walks & Expert Search
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PART 1
Introduction to probabilistic
information retrieval
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» Rank documents by the probability that,
for instance:

— A random document from the documents that
contain the query is relevant (known as “the
probabilistic model” or “naive Bayes”)

— A random surfer visits the page (known as
“Google PageRank”)

— Random words from the document form the
query (known as “language models”)

13/100

Djoerd Hiemstra



ECIR Tutorial

Djoerd Hiemstra

30 March 2008

Al

\Y
University of Twente
The Netherlands

Probabilistic model (Robertson &
Sparck-Jones 1976)
* Probability of getting (retrieving) a
relevant document from the set of
documents indexed by "social".

8,990

r = 1 (number of relevant docs
containing "social")

R =11 (number of relevant docs)

n = 1000(number of docs
containing "social")

N = 10000(total number of docs)

14/100

999

social RELEVANT

University of Twente

The Netherlands

- Bayes’ rule P(L|D)= P(DP“(_I))?( L)
 Conditional

independence P<D|L):l:[ P(D,/L)
N—nk—R+rk

PDE1L=1) = g
P(D=111=0) ="/ p
P(D=0|L=1) = R7/p
P(D=0|L=0) = N-m—Rtn IN-R

RELEVANT
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Google PageRank (Brin & Page 1998)

* Suppose a million monkeys browse the
www by randomly following links

» At any time, what percentage of the
monkeys do we expect to look at page D?

» Compute the probability, and use it to rank
the documents that contain all query
terms
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Google PageRank

* Given a document D, the documents page rank

atstep nis:
P.(D)=(1-2)P(D)+4( .-k-z P,4(1)P(D]I))
| linking to D
» where

P(D [1): probability that the monkey reaches page D
through page 7 (=1 / #outlinks of I')

A probability that the follows a link

1-A: probability that the monkey types a url
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Language models?

» A language model assigns a probability
to a piece of language (i.e. a sequence
of tokens)

P(how are you today)
>

P(cow barks moo souflé)
>

P(asj mokplah gnbgol yokii)

18/100
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Language models (Hiemstra 1998)

* Let's assume we point blindly, one at a time,
at 3 words in a document.

* What is the probability that I, by accident,
pointed at the words “ECIR", “models" and
“tutorial"?

» Compute the probability, and use it to rank the
documents.

19/100
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Lnﬁag models

P(T,.....,T,|D)P(D)
P(T,,....T,)

* Probability theory / hidden Markov model theory

» Successfully applied to speech recognition, and:

— optical character recognition, part-of-speech tagging,
stochastic grammars, spelling correction, machine
translation, etc.

* P(D[T,.T,)=

21/100
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* Email filtering? * Naive Bayes

* Navigational Web « PageRank
Queries?

* Informational * Language
Queries? Models

* Expert Search? . ...

22/100
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PART 2
Advanced statistical language
models
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Noisy channel paradigm (Shannon 1948)

| (input) O (output)

>| noisy channel >

* hypothesise all possible input texts | and take
the one with the highest probability,
symbolically:

i =argmaxP(1|0)
_argma® (1 -P(O|1)
|

24/100
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Noisy channel paradigm (Shannon 1948)

D (document) T, T,,...(query)

>| noisy channel >

* hypothesise all possible documents D and
take the one with the highest probability,

symbolically: |5:argma>d3(D|T1,T2,"')
D
=argmaxP(D)-P(T,,T,,|D)
D
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* Did you get the picture? Formulate the
following systems as a noisy channel:
— Automatic Speech Recognition
— Optical Character Recognition
— Parsing of Natural Language
— Machine Translation
— Part-of-speech tagging

26/100
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Statistical angage models

« Givenaquery T,,T,,...,T,, rank the documents

according to the following probability measure:
n

P(T,,T,,....T,ID)=] | ((1-4)P(T,)+4,P(T,|D))
i=1
A, 1 probability that the term on position i is important
1-A. : probability that the term is unimportant
P(T;| D) : probability of an important term
P(T): probability of an unimportant term

27/100
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Statistical Iangage models

Definition of probability measures:
tf(t,,d)

P(Ti:ti|D:d):m (important term
o diy)

P(Ti—ti)—Zt a0 (unimportant term

A=05

28/100
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Exercise: an expert search test collection

1. Define your personal three-word language model:
Choose three words (and for each word a probability)

2. Write two joint papers, each with two or more co-authors of
your choice for the Int. Conference on Short Papers (ICSP)

— Papers must not exceed two words per author
— Use only words from your personal language model

— ICSP does not do blind reviewing, so clearly put the
names of the authors on the paper

— Deadline: after the coffee-break.
3. Question: Can the PC find out who are experts on x?

29/100
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Exercise 2: simple LM scoring

 Calculate the language modeling scores
for the query y on your document(s)

—What needs to be decided before we are
able to do this?

— 5 minutes!

30/100
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Statistical language models

« How to estimate value of A ?

— For ad-hoc retrieval (i.e. no previously retrieved
documents to guide the search)

A, = constant(i.e. each term equally important)
— Note that for extreme values:
A= 0: term does not influence ranking
A =1:term is mandatory in retrieved docs.
lim A, - 1:docs containing n query terms are
ranked above docs containing n - 1 terms
(Hiemstra 2004)

A
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* Presentation as hidden Markov model
— finite state machine: probabilities governing transitions

— sequence of state transitions cannot be determined
from sequence of output symbols (i.e. are hidden)

BENINC
@ o8

32/100
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Statistical language models

* Implementation

P(T11T21”'1Tn|D):g((l_’li)P(Ti)+’li P(T,|D))

P(Tlszv"',Tn|D)oci |Og(1+(}'i P(Ti|D) )

17, )P(T,)

33/100
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Statistical language models

* Implementation as vector product:

score(q,d) = D, 9 d,

ke matching terms

qk:tf (k 1q>

34/100

30 March 2008



ECIR Tutorial 30 March 2008

University of Twente
The Netherlands

Cross-language IR

cross-language information retrieval
zoeken in anderstalige informatie
recherche d'informations multilingues

35/100
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» Cross-language information retrieval
(CLIR):
— Enter query in one language (language of

choice) and retrieve documents in one or
more other languages.

— The system takes care of automatic
translation

36/100
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Language models & translation

* Noisy

D (doc.)

channel paradigm

T,, T,,...(query)

S, S,,...(request)

>| noisy channel |—>| noisy channel |—>

hypothesise all possible documents D and
take the one with the highest probability:

D=argmaxP(D|S,,S,, )

D
=argmaP(D) Y. P(T,T,, ;S
D T T, .-

1!

S

,.-|D)

A
&
University of Twente

The Netherlands
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Language models & translation

* Cross-language information retrieval :

— Assume that the translation of a word/term does
not depend on the document in which it occurs.

—if: S,S,..., S is a Dutch query of length n

— and ty, t,..., tn are mEnglish translations of the
Dutch query term S

P(S,S;,.... §ID)=

P(SIT;=t;)((1-4)P(T,=t; )+ P(T,=t,|D))

1

3

i=1j

39/100
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Language models & translation

* How does it work in practice?

— Find for each Dutch query term N; the
possible translations tg, ts,..., t» and
translation probabilities

— Combine them in a structured query
— Process structured query

41/100
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Language models & translation

* Example:
— Dutch query: gevaarlijke stoffen

— Translations of gevaarlijke: dangeroug0.8)
or hazardoug1.0)

— Translations of stoffen: fabric (0.3) or
chemicalq0.3) or dust(0.1)

— Structured query:
((0.8 dangerous§l 1.0 hazardous,
(0.3 fabricO 0.3 chemical&] 0.1dus))

42/100
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Language models & translation

» Other applications using the translation
model
— On-line stemming
— Synonym expansion
— Spelling correction
—‘fuzzy’ matching
— Extended (ranked) Boolean retrieval

43/100
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Language models & translation

* Note that:
"A,=1, for all 0<i < n: Boolean retrieval

— Stemming and on-line morphological
generation give exact same results:

P(funny o funnies tablen tablesn tabled =
P(f unni , t abl )

44/100
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Experimental Results

* translation language model

— (source: parallel corpora)

— average precision: 0.335 (83 % of base line)
* no translation model, using all translations:

— average precision: 0.308 (76 % of base line)
* manual disambiguated run (take best

translation)

— average precision: 0.315 (78 % of base line)
(Hiemstra and De Jong 1999)
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Prior probabilities
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Prior probabilities and static ranking
* Noisy channel paradigm (Shannon 1948)

D (document) T,, T,,...(query)

>| noisy channel >

hypothesise all possible documents D and
take the one with the highest probability,

symbolically: ﬁ:argma>d3(D|T1,T2,'~')
D
=argmaxP(D)-P(T,,T,,|D)
D

47/100
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queries

0.001

0.0001

1e-06 -

aouens|al Jo Aljiqeqoad —

Psocer D)=C-doclen D)

10:06 : L :
10 100 1000 10000 100000
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Priors in Entry

Page Search

» Sources of Information
— Document length
— Number of links pointing to a document
— The depth of the URL

— Occurrence of cue words
(‘welcome’,’home’)

— number of links in a document
— page traffic

49/100
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Prior probability of relevance on navigational queries

0.001 T

0.0001

1e05 |-

aouens|al Jo Aljiqeqoad —

1606 = . . -
10 100 1000 10000 100000
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Priors in Entry Page Search

* Assumption
— Entry pages referenced more often
* Different types of inlinks
— From other hosts (recommendation)
— From same host (navigational)
» Both types point often to entry pages

51/100
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Priors in Entry Page Search: URL depth

* Top level documents are often entry pages
* Four types of URLSs

— root: ww. bcs. org

— subroot: ww. bcs. or g/ news

— path: ww. bcs. or g/ news/ 2008

— file: ww. bcs. or g/ news/ 2008/ Cl . ht m
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Priors in Entry Page Search: results

method Content  Anchors
P(Q|D) 0.3375  0.4188
P(Q|D)Paocter(D) 0.2634  0.5600
P(Q|D)Piink(D) 0.4974  0.5365
P(Q|D)Pur(D) 0.7705  0.6301

(Kraalij, Westerveld and Hiemstra 2002)
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Exercise 3 & 4 (and a break)

3. Use the following statistical translation
dictionary and re-calculate your scores in
the translation model:
-P(yl|z1)=0.5P(yl|z2)=1.0
-P(y2123)=0.2,P(y2]z4)=0.1

4. Use a length prior and re-calculate
scores
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Relevance models
&
an application to expert search
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What about relevance feedback?

* We assume that a (one) relevant
document has generated the query

* S0, once we find that document, we
might as well stop.

* What we need is a model of
“relevance”, or language models of sets
of relevant documents
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Lavrenko S relevance model

» "Construct a relevance model P(T|R) by assuming
that once we pick a relevant document D, the
probability of observing a word is independent from
the set of relevant documents”

P(TIR)=). P(T|D)P(D|R)

DeR
* we only have information about R through a
query
P(Tlg,,...)= X, P(T|D)P(Dlg,, ..
DeR
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Lavrenko’s relevance model 1

* |Is really a blind feedback method:
—do an initial run and assign P(Dlq,,...)
— for every retrieved document, get the most
frequent terms T, and assign those P(T|D)

— multiply both probabilities, and sum them for
each document retrieved
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Balog's ex pert finder

* Asin Lavrenko's method, use query to retrieve
some initial documents.

* Instead of query (term) expansion, do person
name expansion

— for every retrieved document, get the
candidates ca, and assign those P(ca|D)

— multiply both probabilities, and sum them for
each document retrieved

(Balog et al. 2006)
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Balog's ex pert finder
» "Construct a candidate model P(caR) by assuming
that once we pick a relevant document D, the
probability of observing a candidate expert is
independent from the set of relevant documents™
P(calR)=)_ P(caD)P(D|R)
DeR
* we only have information about R through a query

P(calg,,..)= Y P(calD)P(D|g,...

DeR
DZRP(ca|D)l}((l—z)P(qi)HP(qilD))
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Balog's ex pert finder

Frel MAP  R-prec MRR P10
Model 1 (candidate model):

BASE 511 0.1253 0.1914 0.2759  0.236
Model 2 (document model):
BASE 580 0.1880 0.2332 0.5149 0.316

Figure 2, Candidate model vs. document model
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The relevance model In action
Q = “amazon rain forest”

word probability
the 0.0776
of 0.0386

These are common words:
and 0.0251 should be explained by ge-
to 0.0244 neral (background) model
in 0.0203
amazon 00114 o interesting word!
for 0.0109

L These are too specific:

assistence 0.0009 might be explained by a
macminn 0.0008 single document model
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What we need is parsimony
» Optimize the probability to predict
language use

* Minimize the total number of
parameters needed for that

» Expectation Maximization Training
(Hiemstra, Robertson and Zaragoza 2004).

65/100

Al
4

University of Twente
The Netherlands

Expectation Maximization Training
&
An application of expert search
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Statistical language models
n
P(T,, T, TID)=[T ((1=4)P(T))+ 4 P(T,D))
i=1
¢ Presentation as hidden Markov model
— finite state machine: probabilities governing
transitions T T T
— sequence of state N
transitions cannot be
determined from ®'®
sequence of output

e e ede
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Fundamental quetions for HMMs

1.Given a model, how do we efficiently
compute the probability P(O) of the
observation sequence O ?

2.Given the observation sequence O and a
model how do we choose a state sequence
that best explains the observations?

3.Given an observation sequence O how do
we find the model that maximises the
probability P(O) of the observation
sequence O ?
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Fundamental answers

1.Forward procedure or backward procedure
2.Viterbi algorithm

3.Baum Welch algorithm / forward-backward
algorithm (special case of the expectation
maximisation-algorithm, or "EM-
algorithm")
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Statistical language models

» Re-estimate the value of A from relevant
documents (relevance feedback)
» Expectation Maximisation algorithm
« Estimate different value of A, for each term
(i.e. different importance of each term.)
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Parsimonious models

» Define background models, document
models and relevance models in a
layered fashion

1. First define background model

2. Higher order model(s) should not model
language that is well explained by the
background model already

3. Use EM training (we’ll see how later on)
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How does it work?

* Remember this equation?
n
P(Tl,TZ,...,Tn|D):H((1—,1)P(Ti)+/1P(Ti|D))
i=1
* In the old days:
_nr. of occurrences in collecti
" size of collectio
(T ):nr. of occurrences in docum:
! size of docume
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How does it work?
e Parsimonious model estimation
( )_nr. of occurrences in collecti
|

""“size of colleco
P(T,|D)= some random initialisation

Repeat E-step and M-step until P(T|D) does not
change significantly anymore
P4(T|D)
(1-4)P(T)+ P, (T|D)
e(T)

E-step e(T)=tf (T,D)

M-step P

TP e

University of Twente
i ky = The Netherlands

How does it work?

* A two-layered model for documents at
index time
1. general model Train document model

2. document model /

Pigeo( TID)=(1-4)P(T )+ 4P(T|D)

Fix parameter A Fix background
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How does it work?

* Atwo-layered model for queries at
search time
1. general model Train relevance model

2. relevance model /

TIR)=(1-4)P(T )+P(T|R)

searcl (

Fix parameter A Fix background
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How does |t Work’?

* Athree-layered model for known
relevant documents Train relevance model
1. genera| model and document model

2. relevance model
3. document model

(TID)=(1-A—u)P(T )+uP(T|R)+AP(T|D)

reI

Only use relevance
model

Fix parameters Fix background
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* Measure cross-entropy between
relevance model and document model

H (R,D):—Z P(T|R)log((1-4)P(T )+ 4P(T|D))

only terms with non-zero P(T|R)
contribute to sum
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p = 0.0000001
word probability
amazon 0.3367
rain 0.3365
forest 0.2896
ban 0.0370
brazil 0.0002
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Serdyukov's expert model

* Use an email archive to search for experts

» Experts both send and receive email on the
topic they know well

* Each email is a mixture of the language
models of each potential expert

—i.e. because of in-line quotations
Po(TID)=2, P(T|E=e]P(E=€|D)

ecD / .\

) Fix parameters
Train expert models
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Serdyukov's expert model

(@) (b)
Balog's model Serdyukov's model

Fig. 1. Dependence networks for two methods of estimating P(e, q1., ..., qx)
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Method

MAP

MRER

R-prec

P5

P10

P20

Method 1

0.1587

0.6530

0.2598

0.4285

0.4122

0.3341

Method 2

0.1712

0.6712

0.2735

0.4306

0.4304

0.3653

Table 1: Performance of expert ranking methods

e (Serdyukov and Hiemstra 2008)
(table contains results from earlier experiments)
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Probabilistic Latent Semantlc Indexing

» Each document is a mixture of a
number of latent models (or topics)

* We do not know what document
discusses what topics

reI
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(T|D) ZPT|M m)P(M=m|D)

T

Only fix the num-
ber of models

Train latent
models

Train model
weights
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Probabilistic Latent Semantic Indexing

» Related to Singular Value
Decomposition

* Problems with over-training
(Hofmann 1999)
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Exercise 5 & 6

5. Find the experts for the query y using
Balog's expert finder model, using only
your document
— Take a uniform P(ca|D) in each document

6. Think about how you would do the EM-
training of Serdyukov's expert finder
model

5 minutes!
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Probabilistic Random Walks
&
An application to expert search
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1. off-line preparation: index corpus with entity
tagging. use NLP techniques to recognize
entities if the are not tagged.

2.on-line, query dependent: building of an entity
containment graph from top ranked retrieved
documents

3.relevance propagation within the graph and
output entities of interest in order of their
relevance.
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NLP tagging
* XML fragment

<entry><p>Jorge Castillo (artist)</p><p>Castillo greatly admired
Pablo Picasso, and that influence shows his paintings, etchings,
and lithographs ...

» tagged fragment

<entry><s><enamex.person>Jorge Castillo</enamex.person>
<0.PUNC>(</O.PUNC> <O.NN>artist</O.NN><O.PUNC>)
</O.PUNC> </s><s><enamex.person>Castillo</enamex.person>
<0.RB>greatly</0.RB> <0O.VBD>admired</O.VBD>
<enamex.person>Pablo Picasso</enamex.person><0.PUNC>,
</O.PUNC> <0.CC>and</0.CC><0.DT>that</O.DT>
<O.NN>influence</O.NN> <O.VBZ>shows</O.VBZ><O.IN >in</
O.IN> <O.PRPDOLAR>his</O.PRPDOLAR> ...
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* We model with entity

@-r /@ containment graphs the
- relationship between
entities and documents.
(@)
ds

* Documents and Entities
are represented as
vertices.

* Edges symbolize the
containment relation.
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Modelling query-dependent scores

* Model 1: vertex * Model 2: additional

weights query node and edge
weights

w(d))

~
N
N

s w(d
S ()
.
<
™~
.
N
.
N

o w(dy)

/s
7 wl(dig)
o
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2. N

Entity identity

* identity check: Is
Gilot the same
person as Francois
Gilot?

* precision: How do
we model the

occurrence of April
8, 1973 and 19737
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Probabilistic random walk

* The mutually recursive definition describes a
walk over the different type of edges in the
graph: query—doc, doc—doc, doc—ent, ent—ent.

Probabilistic Random Walk

o
)
o
I

MY P(eld)P(d) + X2 Y " P(ele')P(€')
d e’

P(d) = XoP(d|q)+ A1 Y P(dle)P(e) + X2 Y P(d|d')P(d')
e d’
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Performance overview of the relevance propagation models:

Model | unweighted | weighted
MAX 0.352
IDG 0.342 0.371
HITS 0.343 0.376
PRW 0.340 0.386

(Rode et al. 2007)
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» Draw graph model 2 (with query node)

for the query y

— Take initially zero probability of nodes,
except for the query node which get 1

— Do two relevance propagation steps
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Advanced models conclusion

e Translation model: accounts for multiple query
representations (e.g. CLIR or stemming) (exercise 3)

* Document priors: account for "non-content" information
(exercise 4)

* Relevance models: query expansion using initial
ranked list (expert search exercise 5)

« Expectation Maximization Training: estimate the
probability of unseen events (expert search exercise 6)

* Random walks: find most central entity/document
(expert search exercise 7)
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» Krisztian Balog, Leif Azzopardi, and Maarten de Rijke.
Formal models for expert nding in enterprise corpora.
Proceedings of SIGIR 2006

» Sergey Brin and Larry Page. The anatomy of a large scale
hypertextual web search engine. In Proceedings of the 7th
World Wide Web Conference, 1998

» Djoerd Hiemstra. A Linguistically Motivated Probabilistic
odel of Information Retrieval., In: Lecture Notes in
Computer Science 1513: Research and Advanced
Technology for Digital Libraries, Springer-Verlag, 1998

» Djoerd Hiemstra and Franciska de Jong. Disambiguation
strategies for cross-language information retrieval., Lecture
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Parsimonious Language Models for Information Retrieval",
In Proceedings of SIGIR 2004
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Finding”, Technical Report 07-81, CTIT, 2007

» Pavel Serdyukov and D#'oerd Hiemstra, Modeling documents
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» Some slides were kindly provided by:
— Pavel Serdyukov
— Henning Rode
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